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LETTER TO THE EDITOR 

Finite-size scaling study of two-dimensional dilute Potts models 

U Glaus 
Department of Physics, Clarkson University, Potsdam, N Y  13676, USA 

Received 9 April 1987 

Abstract. We use transfer matrices to calculate the free energy and various thermodynamic 
quantities of the two- and three-state Potts models with random bond interactions at the 
critical temperature. We verify the Harris criterion for the three-state Potts model and 
estimate the new random critical exponents. For the k ing  case, our results are consistent 
with randomness being irrelevant for the critical behaviour. 

Magnetic systems with quenched random impurities have become the subject of much 
study recently. One generally distinguishes between randomness in the interaction 
strength and in the magnetic field. The latter has usually a drastic effect on the critical 
behaviour of a system. In this letter we report the results of a calculation done on the 
random bond two- and three-state Potts model in two dimensions. These may be 
relevant for describing order-disorder transitions in adsorbed monolayers in the pres- 
ence of substrate imperfections and frozen impurities. Harris ( 1974) first predicted 
that bond randomness causes crossover from the pure to a new (random) critical 
behaviour provided that the pure specific heat exponent ap>O. Since a,=! for the 
three-state Potts model (den Nijs 1979, Alexander 1975, Baxter 1980), it is interesting 
to investigate the effect of bond randomness in this case. Some preliminary results 
have been obtained by Kinzel and Domany (1981) and Yeomans and Stinchcombe 
(1980) by means of a real space renormalisation group calculation. 

For the Ising (two-state Potts) model, a p  = 0 (Onsager 1944) and the Harris criterion 
cannot be used, but one would expect any pure system with a second-order phase 
transition characterised by a divergent specific heat to be strongly sensitive to bond 
impurities in the critical region. 

Early Monte Carlo simulations on the two-dimensional random bond Ising model 
have shown no changes from the pure critical behaviour (Ching and Huber 1976, Stoll 
and Schneider 1976, Fisch and Harris 1976). In addition, in a neutron scattering 
experiment on the site diluted two-dimensional antiferromagnet Rb2Coo.,Mg,,,F4, the 
correlation length and staggered susceptibility exhibited pure Ising critical behaviour 
above the NCel temperature (Birgeneau et a1 1983). It seems then that bond randomness 
is irrelevant in the Ising model. 

However, Dotsenko and Dotsenko (1983) arrive at a different conclusion. They 
start with the well known formulation of the ZD Ising model in the critical region as 
a continuum free fermion field theory. In analogy to the replica formulation the 
impurities are then shown to give rise to a four-fermion interaction in an n-component 
field, whose strength is proportional to the impurity concentration. These models are 
known to be renormalisable in two dimensions. For the relevant n + 0 limit, the critical 
behaviour could be obtained exactly by the renormalisation group method. They found 
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that for any small concentration p of impurities the specific heat C changes from its 
pure C - -In/tl behaviour ( t  = ( T -  Tc)/ T,) to C - -1nllnlfll provided f << 
exp( -constant/p); more drastically for the two-point function (So; SR) ,  which decays 
as R-" with 7 = a  for the pure Ising model at  criticality, 7 changes to zero provided 
R >> exp(constant/p). It can be expected that these properties hold for any p f 0. 

Very recently, Ludwig ( 1986a) performed a renormalisation group calculation on 
the two-dimensional random q-state Potts model, where, in analogy to the (4- 
d)-expansion for 44-field theory around the Gaussian model, a ( q  - 2)-expansion 
around the two-dimensional Ising model is carried out. He confirms the In-In form 
of the specific heat for the random Ising model and obtains the leading corrections to 
it. His calculations, among other things, also yield the value 

Y T  = 0.98 (1) 

for the random thermal exponent of the three-state Potts model. 

on the sites i of a square lattice. To each spin configuration is attributed an energy 
The system studied in the following consists of Potts spins U, E (1 , .  . . , q }  placed 

H = c J < d V , . V !  (2) 
( 1 1 )  

where (ij) denotes nearest neighbours, S , , , ,  is the Kronecker symbol and  the J ( , , )  are 
independent random variables, each one having the probability distribution 

(3) 

1. For this distribution, the critical temperature T, = p i '  is given exactly 

p ( J )  =; ( 6 ( J +  l ) + 6 ( J +  E ) }  

with 0 E 

(Fisch 1978, Kinzel and  Domany 1981) by the equation 

(eP&-  l ) (e fP ' -  1) = q. (4) 
From now on we fix E = f , corresponding to T, = 0.82 for q = 2 and T, = 0.72 for q = 3. 

We have evaluated the free energy and its temperature ( T )  and magnetic field ( h )  
derivatives on long strips of width N with 2 s N 6 8 for q = 2 and 2 s N 6 7 for q = 3. 

Let 

denote the Hamiltonian in row 1 along the strip with periodic boundary conditions 
across the strip. The transfer matrix 

T = exp(-P,H/) ( 6 )  

acts on the q -dimensional space V of spin configurations. Starting with any vector 
uO (with length / juOj/)  in V and  any bond realisation, the random bond configurational 
averaged free energy per site F Z  on an infinitely long strip is given by (Furstenberg 1963) 

FE = -(/3cN)-'.\cl ( 7 a )  

In practice, L has to be chosen large enough to ensure a small statistical error. If the 
T and h derivatives of F E  were taken numerically, these statistical uncertainties would 
be enhanced by a few orders of magnitude for each derivative resulting in useless data. 
Fortunately, F E  is an  analytic function of T and h. It is therefore possible to 
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simultaneously iterate several vectors corresponding to the coefficients of the Taylor 
expansion in powers of T and h. To obtain the correlation length along the strips, a 
vector v i  in the subspace corresponding to the appropriate irreducible representation 
of the symmetric group sy has to be iterated yielding as in (7b).  The correlation 
length is then given by 

6L’ = W A o , N / 1 4 1 , N ) .  (8) 

We have evaluated tN at T, for q = 2,3. As expected from finite-size scaling (Fisher 
1971), tN is found to be approximately proportional to N. For 9 = 3, we estimate the 
exponent U defined by 

t-lT- TCl-” (9) 

where 6 is the correlation length in the thermodynamic limit. For two successive strip 
widths, v N. + I follows from the finite-size scaling relation 

1+ V N ; ~ + ,  = l n ( & + i / & ) / l n ( ( N +  I ) / N )  (10) 

where 6; denotes the T derivative of tN at T,.  Figure 1 shows a plot of v ~ ~ ~ ~ + ~  against 
N - ’  for the random three-state Potts model together with the exact values for the pure 
(non-random) case for comparison. The strip lengths L were L = 5 x 10’ for 2 G N S 5, 
L = 1.5 x 10’ for N = 6 and L = 5 x lo4 for N = 7. The error bars in all figures were 
estimated from observing the fluctuations in .40,N and A , , N  and their temperature 
derivatives by recording their values every 200 transfer matrix iterations for three 
independent runs for each value of N. It is obvious from this plot that already for 
strips as small as we have considered, the values for are distinctly larger for 
the random system than in the pure case. We estimate 

v = 1.05*0.1. (11) 

This should be compared with equation (1) where Y = l / y T .  
At critical points in 2~ models, the correlation functions are invariant under 

conformal transformations. It was shown (Cardy 1984) that this implies for the 

I I 
\ 
-\, - 

\ 
\ 

correlation length on the strip 

tN = N/(rr]) 

1IN 

Figure 1. Estimates of U,,,+, (equation (10)) against t /  N for q = 3. Open circles denote 
the pure and full circles the random model values. Error bars in the random case were 
obtained as explained in the text. Broken and full curves are guides to the eye used for 
the extrapolation N +aLD. 
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where 7 describes the power law decay of the two-point correlation function. In  figure 
2 we plot ?N from (12) for ( a )  q = 2  and ( 6 )  q = 3  for the random and pure systems 
against N - ’ .  For q = 2 ,  L = 2 x lo5 for all N .  Figure 2 ( a )  shows that for q = 2, the 
pure and random values for qN behave very similarly for the strip widths considered. 
In fact, a naive extrapolation of the random data suggests 

(13) 

in contradiction to the exact 7 = O  (Dotsenko and  Dotsenko 1983). It seems that 
crossover to the predicted random behaviour occurs on a much larger length scale and 
could therefore only be observed if N was increased by an  order of magnitude. For 
q = 3 (figure 2(6))  the random values deviate rather strongly from the pure ones and 
we estimate 

7 = 0.285 *0.01 (14) 

for the random three-state Potts model, distinctly larger than the exact conjectured 
pure value 7 = 0.267 (Nienhuis et a1 1980, Pearson 1980, Baxter 1980). 

For q = 2 we have also calculated the magnetic susceptibility ,yN by applying a 
uniform field h giving rise to a term 

7 = 0.25 * 0.01 

h c a,,,,, 
I 

to be added to the Hamiltonian defined in ( 2 ) .  xN is then given by 

From finite-size scaling it is expected that 

(17) xN - N y i ”  

at T,, where y is defined by xN==( T )  - IT- T,I-’. Assuming Y = 1, figure 3 shows a 
plot of our estimates 

Y N .  N + I = In(X N + 1 /xN ) / I n (  ( $- )/ ) (18) 

0 
( a 1  

/ 
0 20 - 

rl 
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0 2  0 4  0 2  0 .4 

1 IN 1IN 
Figure 2. q,, obtained from (12 )  against 1 / N  for ( a )  q = 2  and  ( b )  q = 3 .  The symbols 
are  the same as  in figure 1. The continuations of the curves to the upper  right-hand corner 
of figure 2( 6 )  point in the direction of the estimated values for N = 2, not shown in the figure. 
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Figure 3. y.*.,\+, obtained from (18) against 1 / N  for q = 2 .  The symbols are the same as 
in figure 1. 

against N - '  for 2 s N s 7 .  The data for the random and pure system are very close 
and straight extrapolation of the random values yields 

y =  1.75*0.03. (19) 

There is no agreement with the predicted y = 2 (Dotsenko and Dotsenko 1983). 

energy p,FE at T, one can estimate the conformal anomaly number c by using 
Blote er a1 (1986) and Affleck (1986) have shown that from the scaled strip free 

x 
p,F: = P,F,",-- c + 0 ( 1 / N 2 ) .  (20) 6N '  

Recently, Ludwig (1986b) has calculated the leading O( 1/ N2) corrections for q = 2 in 
(20) and shown that, contrary to the pure case, the effective c( N, N + 1) as obtained 
from (20) by comparing two successive strip widths neglecting corrections should 
converge to its asymptotic value c = f from below. We have tried to verify this behaviour 
by producing high-quality data for & , N ,  which are given in table 1 together with the 
resulting estimates for c( N, N +  1). As in the pure case, the values seem to converge 
to $ from above in disagreement with the renormalisation group calculation. 

Our results for the critical exponents and the corrections to scaling in the conformal 
anomaly for the q = 2 state Potts model (or the Ising model) with random interactions 
are in disagreement with analytical calculations by Dotsenko and Dotsenko (1983) 
and Ludwig (1986b). A natural explanation for this, already provided by Dotsenko 

Table 1. Scaled free energy - P F  and resulting estimate for the conformal anomaly c( N ,  N + 
1 )  obtained from (20) by neglecting O ( N - ' )  corrections. N denotes the strip width and 
L the strip length. The number in brackets for -OF denotes uncertainty in the last quoted 
digits. Error bars for c were obtained directly from those of -PF. 

N L  -PF C 

1 os 
2 x  10' 

1 O6 
1 Oh 
1 Oh 
2 x  loh 
2 x  loh 

1.039 43 (20) 
0.995 55 (13) 
0.981 63 (10) 
0.975 04 (8)  
0.971 75 ( 7 )  
0.969 66 (6) 
0.968 40 (5) 

0.605 + 0.005 
0.55-tO.01 
0.56 + 0.02 
0.5 1 + 0.03 
0.54+0.04 
0.50+0.05 
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and Dotsenko, is that crossover to random critical behaviour only sets in on very large 
length scales or for very large strip width N. The probability distribution (3) for the 
random bonds chosen for our calculation implies that the concentration p of impurities 
is very large. If  the estimate R,- exp(constant/p) for the crossover length scale applies 
also for our distribution, R, would be of the order of a few lattice spacings and 
crossover effects should be seen with the strip widths we considered. If, as seems to 
be the case, R, is much larger, it is hard to find a simple physical reason for the 
existence for it. A theory for the crossover behaviour in the random bond Ising model 
would therefore be very useful. 

For q = 3, we have found strong evidence for the validity of the Harris criterion 
and provided estimates for the random exponents Y and 7. While we do not know of 
any other calculation of 77 in the literature, the estimate for v agrees well with the 
renormalisation group calculation of Ludwig (1986a). 

I would like to thank N Bartelt for very helpful discussions. This work was partially 
supported by a grant from the US Department of Energy under Grant no DE-FG 
05-84ER4507 1. 
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